Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems
نویسندگان
چکیده
In recent years, attention has been devoted to the development of efficient iterative solvers for the solution of the linear system of equations arising from the discontinuous Galerkin (DG) discretization of a range of model problems. In the framework of two level preconditioners, scalable non-overlapping Schwarz methods have been proposed and analyzed for the h–version of the DG method in the articles [1, 2, 6, 7, 9]. Recently, in [3] it has been proved that the non-overlapping Schwarz preconditioners can also be successfully employed to reduce the condition number of the stiffness matrices arising from a wide class of high–order DG discretizations of elliptic problems. In this article we aim to validate the theoretical results derived in [3] for the multiplicative Schwarz preconditioner and for its symmetrized variant by testing their numerical performance. This article is organized as follows. In Section 2 we introduce the model problem and its DG approximation. In Section 3 we construct the Schwarz preconditioners, and recall the main theoretical results shown in [3]. Finally, in Section 4 we present some numerical results obtained with the multiplicative Schwarz preconditioner and its symmetrized variant.
منابع مشابه
Algebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh
Algebraic multigrid is investigated as a solver for linear systems that arise from high-order spectral element discretizations. An algorithm is introduced that utilizes the efficiency of low-order finite elements to precondition the high-order method in a multilevel setting. In particular, the efficacy of this approach is highlighted on simplexes in two and three dimensions with nodal spectral ...
متن کاملMultilevel Preconditioning of Elliptic Problems Discretized by a Class of Discontinuous Galerkin Methods
We present optimal order preconditioners for certain discontinuous Galerkin (DG) finite element discretizations of elliptic boundary value problems. A specific assembling process is proposed which allows us to use the hierarchy of geometrically nested meshes. We consider two variants of hierarchical splittings and study the angle between the resulting subspaces. Applying the corresponding two-l...
متن کاملMultigrid algorithms for high order discontinuous Galerkin methods
I n this paper we study the performance of hand p-multigrid algorithms for high order Discontinuous Galerkin discretizations of elliptic problems. We test the performance of the multigrid schemes employing a wide class of smoothers and considering both twoand three-dimensional test cases.
متن کاملPRECONDITIONING OF DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS A Dissertation by VESELIN
Preconditioning of Discontinuous Galerkin Methods for Second Order Elliptic Problems. (December 2007) Veselin Asenov Dobrev, B.S., Sofia University Chair of Advisory Committee: Dr. Raytcho Lazarov We consider algorithms for preconditioning of two discontinuous Galerkin (DG) methods for second order elliptic problems, namely the symmetric interior penalty (SIPG) method and the method of Baumann ...
متن کاملA Multilevel Method for Discontinuous Galerkin Approximation of Three-dimensional Elliptic Problems
We construct optimal order multilevel preconditioners for interiorpenalty discontinuous Galerkin (DG) finite element discretizations of 3D elliptic boundary-value problems. A specific assembling process is proposed which allows us to characterize the hierarchical splitting locally. This is also the key for a local analysis of the angle between the resulting subspaces. Applying the corresponding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013